Как сделать электронные часы. Девайсы. Часы с большими цифрами. Готовые часы на Arduino

Часы со светодиодным семисегментным индикатором на микросхеме К145ИК1911

История этих часов появления на сайте немного иная, от других схем на сайте.

Обычный выходной, захожу на почту,роюсь, и на хожу наш читатель Федоренко Евгений, прислал схему часов,с описанием и со всеми фотографиями.

Кратко о схеме.Это схема электронных часов своими руками выполненная на микросхеме К145ИК1911 , и время выводится на семи сегментные светодиодные индикаторы.И так его статья.Смотрим все.

Схема часов:


Для увеличения снимка, его просто стоит увеличить нажатием.И сохранить компьютер.

Не так давно передо мной встала задача – либо купить новые часы, либо собрать новые самостоятельно. Требования к часам выдвигались простые – на дисплее должны отображаться часы и минуты, должен быть будильник, причём, в качестве устройства отображения должны использоваться светодиодные семисегментные индикаторы. Не хотелось нагромождать кучу логических микросхем, а с программированием контроллеров связываться не было желания. Выбор остановил на разработке советской электронной промышленности – микросхеме К145ИК1901 .

В магазине на тот момент её не оказалось, но был аналог, в 40 выводном корпусе – К145ИК1911. Наименование выводов данной микросхемы ничем не отличается от предыдущей, различие – в нумерации.



Минусом этих микросхем является то, что они работают только с вакуумными люминесцентными индикаторами. Для обеспечения стыковки со светодиодным индикатором потребовалось построить схему согласования на полупроводниковых ключах.

В качестве драйверов строк – J1-J7 можно применить транзисторы КТ3107 с буквенным индексом И, А, Б. Для драйверов выбора сегментов D1-D4 пойдут КТ3102И, либо КТ3117А, КТ660А, а также любые другие с максимальным напряжением коллектор-эмиттер не менее 35 В и током коллектора не менее 100 мА. Ток сегментов индикаторов регулируется резисторами в коллекторных цепях драйверов строк.



Для разделения разрядов часов и минут используется точка, мигающая с частотой 1 Гц.

Эта частота присутствует на выводе микросхемы Y4, после того, как начался отсчёт времени. В данной схеме также предусмотрена возможность отображения на дисплее вместо часов и минут – минут и секунд соответственно. Переход в данный режим осуществляется нажатием на кнопку «Сек.». Возврат к индикации времени часов и минут осуществляется после нажатия кнопки «Возврат». Данная микросхема обеспечивает возможность установки двух будильников одновременно, но в данной схеме второй будильник не используется за ненадобностью. В качестве звукоизлучателя использована пьезо-пищалка со встроенным генератором, с напряжением питания 12В. Сигнал включения будильника снимается с вывода Y5 микросхемы. Для обеспечения прерывистого звучания, сигнал модулируется частотой 1 Гц, используемой для индикации секундного ритма (точки). Для более подробного изучения функционала микросхемы К145ИК1901(11) можно обратиться к документации, которую в последнее время можно без труда найти в сети. Питание микросхемы должно осуществляться отрицательным напряжением -­27В±10%. Согласно проведённым экспериментам, микросхема сохраняет работоспособность даже при напряжении -19В, причём точность хода часов при этом ничуть не пострадала.

Схема часов приведена на рисунке выше. В схеме были применены чип-резисторы типоразмера 1206, что позволяет существенно уменьшить габариты устройства. В качестве семисегментных индикаторов подойдут любые, с общим анодом.

Ну вот кончилась статься на данный момент.Которая будет еще дорабатываться и пополняться.А я выражаю благодарность ее автору-Федоренко Евгений,по всем вопросам а так же дать его почту.Пишите на Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

20 августа 2015 в 12:34

Самодельные электронные часы, элементная база - часть 1, измерение времени

  • DIY или Сделай сам

Наверное, каждый гик, увлекающийся самодельной электроникой, рано или поздно приходит к идее сделать свои, уникальные, часы. Идея вполне неплоха, разберемся как и на чем их лучше сделать. В качестве отправной точки будем считать, что человек умеет программировать микроконтроллеры, понимает как переслать 2 байта по i2c или serial-порту, и может спаять вместе несколько проводов. В принципе, этого достаточно.

Понятно, что ключевая функция часов - измерение времени (кто бы подумал, да?). И делать это желательно максимально точно, здесь есть несколько вариантов и подводных камней.

Итак, какие доступные в «железе» способы измерения времени мы можем использовать?

Встроенный RC-генератор процессора

Самая простая идея, которая может придти в голову - это просто настроить программный таймер, и им отсчитывать секунды. Так вот, эта идея никуда не годится. Часы-то работать конечно будут, только вот точность встроенного генератора никак не регламентируется, и может «плавать» в пределах 10% от номинала. Вряд ли кому-то нужны часы, уходящие в месяц на 15 минут.

Модуль реального времени DS1307

Более правильный вариант, он же использующийся в большинстве «народных» изделий - это часы реального времени. Микросхема обменивается с микроконтроллером по I2C, требует минимума обвязки (кварц и пара резисторов). Цена вопроса около 100р за микросхему, или около 1$ на ебее за готовую плату с микросхемой, модулем памяти и разъемом для батарейки.

Схема из даташита:

Что не менее важно, микросхема выпускается в DIP-корпусе, значит припаять ее может любой начинающий радиолюбитель. Встроенная батарейка обеспечивает работу часов, даже если питание было отключено.

Казалось бы, все хорошо, если бы не одна проблема - невысокая точность. Примерная точность часовых кварцев - 20-30ppm. Обозначение ppm - parts per million, показывает число миллионных долей. Казалось бы, 20миллионных - это супер, однако для частоты в 32768Гц получается 20*32768/1000000 = ±0,65536Гц, т.е. уже полгерца. Путем несложных подсчетов видно, что генератор с такой разницей за сутки «натикает» лишних (или недостающих) 56тыс тактов, что соответствует 2 секундам в день. Кварцы бывают разные, некоторые пользователи писали и об ошибке в 5 секунд в день. Как-то не очень точно - за месяц такие часы уйдут как минимум, на минуту. Это уже приличная разница, заметная невооруженным глазом (когда любимый сериал бабушки начинается в 11.00, а часы показывают 11.05, разработчику таких часов перед родственниками будет неудобно).

Впрочем, поскольку температура в помещении более-менее стабильна, и частота кварца не будет сильно меняться, можно добавить программную коррекцию. Другой совет, даваемый на форумах, использовать часовой кварц от старых материнских плат, по отзывам, они там довольно точные.

Модуль реального времени DS3231

Мы не первые, кто задался вопросом точности, и компания Dallas пойдя навстречу пожеланиям, выпустила более совершенный модуль - DS3231. Он называется «Extremely Accurate Real Time Clock», имеет встроенный генератор с температурной коррекцией. Точность в 10 раз выше, и составляет 2ppm. Цена вопроса чуть повыше, но корпус микросхемы рассчитан под SMD-монтаж, паять не так удобно, зато можно купить на ебее готовую плату.


(фото с сайта продавца)

Точность в 6 секунд в месяц, это уже неплохой результат. Но мы пойдем дальше - в идеале, часы в 21 веке вообще не нужно подстраивать.

Радиомодуль DCF-77

Метод скорее экзотический, но для полноты картины его нельзя не упомянуть. Немногие знают, но сигналы точного времени передаются по радио еще с 70х годов. Передатчик DCF-77 расположен в Германии недалеко от Франкфурта, и на СДВ-частоте 77.5КГц передаются метки точного времени (да, у них уже 20 лет назад были настенные и настольные часы, которые не надо подстраивать).

Способ хорош тем, что схема имеет малое энергопотребление, так что сейчас производятся даже наручные часы с такой технологией. Готовую плату приема DCF-77 можно купить на ebay, цена вопроса 20$.

Многие часы и метеостанции имеют возможность приема DCF-77, проблема лишь в том, что до России сигнал практически не доходит. Карта покрытия с Википедии:

Как можно видеть, лишь Москва и Питер находятся на границе зоны приема. По отзывам владельцев, лишь иногда сигнал удается принять, что для практического применения конечно, не годится.

GPS-модуль

Если часы будут стоять недалеко от окна, то вполне реальный метод получения точного времени - GPS-модуль. Эти модули можно недорого купить на ebay (цена вопроса 10-15$). Например, Ublox NEO-6M, подключается напрямую к serial-пинам процессора, и выдает строки NMEA на скорости 9600.

Данные приходят примерно в таком формате " $GPRMC,040302.663,A,3939.7,N,10506.6,W,0.27,358.86,200804,*1A", и распарсить их даже для слабой Arduino труда не составляет. Патриоты кстати, могут приобрести более дорогой модуль Ublox NEO-7N, поддерживающий (по отзывам) как GPS так и «Глонасс».

Очевидно, что про разные часовые пояса GPS-модуль ничего не знает, так что их вычисление и смену летнего/зимнего времени, разработчику придется продумать самому. Другой минус использования GPS - относительно высокое энергопотребление (впрочем, некоторые модули можно отдельными командами переводить в «спящий режим»).

Wi-Fi

И наконец, последний (и самый очевидный на сегодняшний момент), способ получения точного времени - это брать его из Интернета. Здесь есть два подхода. Первый, и наиболее простой - использовать в качестве платы часов что-то типа Raspberry PI с Линуксом, тогда делать ничего не надо, все будет работать «из коробки». Если же хочется «экзотики» - то самым интересным вариантом является модуль esp8266.

Это недорогой (цена вопроса около 200р на ebay) WiFi-модуль может обмениваться с сервером по serial-порту процессора, при желании его можно также перепрошить (сторонних прошивок довольно много), и часть логики (например опрос сервера времени) сделать в самом модуле. Сторонними прошивками поддерживается куча всего, от Lua до C++, так что вариантов «размять мозги» вполне достаточно.

На этом тему измерения времени наверно можно закрыть. В следующей части мы поподробнее рассмотрим процессоры, и способы вывода времени.

В продаже можно встретить много различных моделей и вариантов электронных цифровых часов, но большинство из них расчитаны на использование внутри помещений, так как цифры маленькие. Однако иногда требуется разместить часы на улице - например на стене дома, или на стадионе, площади, то есть там, где они будут видны на большом расстоянии многими людьми. Для этого и была разработана и успешно собрана данная схема больших светодиодных часов, к которым можно подключить (через внутренние транзисторные ключи) LED индикаторы сколь угодно большого размера. Увеличить принципиальную схему можно кликнув по ней:

Описание работы часов

  1. Часы. В данном режиме идёт стандартный вид отображения времени. Имеется цифровая коррекция точности хода часов.
  2. Термометр. В этом случае устройство производит измерение температуры комнаты либо воздуха на улице, с одного датчика. Диапазон от -55 до +125 градусов.
  3. Предусмотрен контроль источника питания.
  4. Вывод информации на индикатор попеременно - часов и термометра.
  5. Для сохранения настроек и установок при пропадании 220В, применена энергонезависимая память.


Основой устройства является МК ATMega8, который прошивают выставляя фузы согласно таблице:

Работа и управление часами

Включив часы в первый раз, на экране появится рекламная заставка, после чего переключится на отображение времени. Нажимая на кнопку SET_TIME индикатор пойдёт по кругу из основного режима:

  • режим отображения минут и секунд. Если в этом режиме одновременно нажать на кнопку PLUS и MINUS , то произойдет обнуление секунд;
  • установка минут текущего времени;
  • установка часов текущего времени;
  • символ t . Настройка продолжительности отображения часов;
  • символ o . Время отображения символов индикации внешней температуры (out);
  • величина ежесуточной коррекции точности хода часов. Символ c и значение коррекции. Пределы установки от -25 до 25 сек. Выбранная величина будет ежесуточно в 0 часов 0 минут и 30 секунд прибавлена или вычтена из текущего времени. Более подробно читайте в инструкции, что в архиве с файлами прошивки и печатных плат.

Настройка часов

Удерживая кнопки PLUS /MINUS делаем ускоренную установку значений. После изменения каких-либо настроек, через 10 секунд новые значения запишутся в энергонезависимую память и будут считаны оттуда при повторном включении питания. Новые настройки вступают в силу по ходу установки. Микроконтроллер отслеживает наличие основного питания. При его отключении питание прибора осуществляется от внутреннего источника. Схема резервного модуля питания показана ниже:


Для уменьшения тока потребления отключаются индикатор, датчики и кнопки, но сами часы продолжают отсчитывать время. Как только напряжение сети 220В появится - все функции индикации восстанавливаются.


Так как устройство задумывалось как большие светодиодные часы, в них есть два дисплея: большой светодиодный - для улицы, и маленький ЖКИ - для удобства настройки основного дисплея. Большой дисплей расположен на расстоянии несколько метров от блока управления и соединен двумя кабелями по 8 проводов. В управление анодами внешнего индикатора индикаторов, применены транзисторные ключи по приведенной в архиве схеме. Авторы проекта: Александрович & SOIR. Предлагаю для повторения схему простых электронных часов с будильником, выполненные на типа PIC16F628A. Большим плюсом данных часов является светодиодный индикатор типа АЛС, для отображения времени. Лично мне порядком надоели всевозможные ЖКИ и хочется иметь возможность видеть время из любой точки комнаты в том числе в темноте, а не только прямо с хорошим освещением. Схема содержит минимум деталей и имеет отличную повторяемость. Часы испытаны на протяжении месяца, что показало их надежность и работоспособность. Думаю из всех схем в интернете, эта наиболее простая в сборке и запуске.

Принципиальная схема электронных часов с будильником на микроконтроллере:


Как видно из схемы часов, является единственной микросхемой, используемой в данном устройстве. Для задания тактовой частоты используется кварцевый резонатор на 4 МГц. Для отображения времени использованы индикаторы красного цвета с общим анодом, каждый индикатор состоит из двух цифр с десятичными точками. В случае использования пьезоизлучателя, конденсатор С1 - 100мкФ можно не ставить.

Можно применить любые индикаторы с общим анодом, лишь бы каждая цифра имела собственный анод. Чтоб электронные часы были хорошо видны в темноте и с большой дистанции - старайтесь выбрать АЛС-ки чем покрупнее.


Индикация в часах осуществляется динамически. В данный конкретный момент времени отображается лишь одна цифра, что позволяет значительно снизить потребление тока. Аноды каждой цифры управляются микроконтроллером PIC16F628A. Сегменты всех четырех цифр соединены вместе и через токоограничивающие резисторы R1 … R8 подключены к выводам порта МК. Поскольку засвечивание индикатора происходит очень быстро, мерцание цифр становится незаметным.


Для настройки минут, часов и будильника - используются кнопки без фиксации. В качестве выхода для сигнала будильника используется вывод 10, а в качестве усилителя - каскад на транзисторах VT1,2. Звукоизлучателем является пьезоэлемент типа ЗП. Для улучшения громкости вместо него можно поставить небольшой динамик.


Питаются часы от стабилизированного источника напряжением 5В. Можно и от батареек. В часах реализовано 9 режимов индикации. Переход по режимам осуществляется кнопками "+" и "-". Перед выводом на индикацию самих показаний, на индикаторы выводится короткая подсказка названия режима. Длительность вывода подсказки - одна секунда.


Кнопкой "Коррекция" часы - будильник переводятся в режим настроек. При этом кратковременная подсказка выводится на пол секунды, после чего корректируемое значение начинает мигать. Коррекция показаний осуществляется кнопками "+" и "-". При длительном нажатии на кнопку, включается режим автоповтора, с заданной частотой. Все значения, кроме часов, минут и секунд, записываются в EEPROM и восстанавливаются после выключения - включении питания.


Если в течение нескольких секунд ни одна из кнопок не нажата, то электронные часы переходят в режим отображения времени. Нажатием на кнопку "Вкл/Выкл" включается или выключается будильник, это действие подтверждается коротким звуком. При включенном будильнике светится точка в младшем разряде индикатора. Думал куда бы пристроить часы на кухне, и решил вмонтировать их прямо в газовую плиту:) Материал прислал in_sane.


Обсудить статью ЭЛЕКТРОННЫЕ ЧАСЫ БУДИЛЬНИК

Предлагаю вашему вниманию электронные часы на микроконтроллере . Схема часов очень проста, содержит минимум деталей, доступна для повторения начинающим радиолюбителям.

Конструкция собрана на микроконтроллере и часов реального времени DS1307 . В качестве индикатора текущего времени использован четырехразрядный семисегментный светодиодный индикатор (ультраяркий, голубого цвета свечения, что неплохо смотрится в темное время, и, заодно, часы играют роль ночника). Управление часами происходит двумя кнопками. Благодаря использованию микросхемы часов реального времени DS1307, алгоритм программы получился довольно простым. Общение микроконтроллера с часами реального времени происходит по шине I2C, и организованно программным путем.

Схема часов:

К сожалению, в схеме есть ошибка:
— выводы МК к базам транзисторов нужно подключать:
РВ0 к Т4, РВ1 к Т3, РВ2 к Т2, РВ3 к Т1
или поменять подключение коллекторов транзисторов к разрядам индикатора:
Т1 к DP1 ….. Т4 к DP4

Детали, используемые в схеме часов:

♦ микроконтроллер ATTiny26:

♦ часы реального времени DS1307:

♦ 4-разрядный семисегментный светодиодный индикатор – FYQ-5641UB -21 с общим катодом (ультраяркий, голубого цвета свечения):

♦ кварц 32,768 кГц, с входной емкостью 12,5 пф (можно взять с материнской платы компьютера), от этого кварца зависит точность хода часов:

♦ все транзисторы — NPN-структуры, можно применить любые (КТ3102, КТ315 и их зарубежные аналоги), я применил ВС547С
♦ микросхемный стабилизатор напряжения типа 7805
♦ все резисторы мощностью 0,125 ватт
♦ полярные конденсаторы на рабочее напряжение не ниже напряжения питания
♦ резервное питание DS1307 – 3 вольтовый литиевый элемент CR2032

Для питания часов можно использовать любое ненужное зарядное устройство сотового телефона (в этом случае, если напряжение на выходе зарядного устройства в пределах 5 вольт ± 0,5 вольта, часть схемы — стабилизатор напряжения на микросхеме типа 7805, можно исключить)
Ток потребления устройством составляет — 30 мА.
Батарейку резервного питания часов DS1307 можно и не ставить, но тогда, при пропадании напряжения в сети, текущее время придется устанавливать заново.
Печатная плата устройства не приводится, конструкция была собрана в корпусе от неисправных механических часов. Светодиод (с частотой мигания 1 Гц, от вывода SQW DS1307) служит для разделения часов и минут на индикаторе.

Установки микроконтроллера заводские: тактовая частота — 1МГц, FUSE-биты трогать не надо.

Алгоритм работы часов (в Algorithm Builder):

1. Установка указателя стека
2. Настройка таймера Т0:
— частота СК/8
— прерывания по переполнению (при такой предустановленной частоте вызов прерывания происходит каждые 2 миллисекунды)
3. Инициализация портов (выводы РА0-6 и РВ0-3 настраиваются на выход, РА7 и РВ6 на вход)
4. Инициализация шины I2C (выводы РВ4 и РВ5)
5. Проверка 7-го бита (СН) нулевого регистра DS1307
6. Глобальное разрешение прерывания
7. Вход в цикл с проверкой нажатия кнопки

При первом включении, или повторном включении при отсутствии резервного питания DS307, происходит переход в первоначальную установку текущего времени. При этом: кнопка S1 – для установки времени, кнопка S2 – переход к следующему разряду. Установленное время – часы и минуты записываются в DS1307 (секунды устанавливаются в ноль), а также вывод SQW/OUT (7-й вывод) настраивается на генерацию прямоугольных импульсов с частотой 1 Гц.
При нажатии кнопки S2 (S4 — в программе) происходит глобальный запрет прерываний, программа переходит в подпрограмму коррекции времени. При этом, кнопками S1 и S2 устанавливаются десятки и единицы минут, затем, с 0 секунд, нажатием кнопки S2 происходит запись уточненного времени в DS1307, разрешение глобального прерывания и возвращение в основную программу.

Часы показали хорошую точность хода, уход времени за месяц — 3 секунды.
Для улучшения точности хода, кварц рекомендуется подключать к DS1307, как указано в даташите:

Программа написана в среде «Algorithm Builder».
Вы можете, на примере программы часов, ознакомиться с алгоритмом общения микроконтроллера с другими устройствами по шине I2C (в алгоритме подробно прокомментирована каждая строчка).

Фотография собранного устройства и печатная плата в формате.lay от читателя сайта Анатолия Пильгук, за что ему огромное спасибо!

В устройстве применены: Транзисторы — СМД ВС847 и ЧИП резисторы

Приложения к статье:

(42,9 KiB, 3 227 hits)

(6,3 KiB, 4 180 hits)

(3,1 KiB, 2 657 hits)

(312,1 KiB, 5 929 hits)


Второй вариант программы часов в АБ (для тех у кого нескачивается верхний)

(11,4 KiB, 1 942 hits)